Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 976
Filtrar
1.
Cancer Pathog Ther ; 2(2): 74-80, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38601486

RESUMO

Bladder cancer encapsulates a wide spectrum of disease severities, with non-muscle invasive bladder cancer (NMIBC) representing an entirely different entity from muscle-invasive disease. Bacillus Calmette-Guérin (BCG) is one of the most successful intravesical treatment methods for patients diagnosed. However, a considerable proportion of patients fail to respond to BCG treatment. Given the propensity for recurrence in patients with high-risk bladder cancer, these patients present with surgical dilemmas. There is currently no gold standard for salvage treatment post-BCG failure or unified definition as to what that means. In this review, we discuss the mechanisms of action and pathophysiology of BCG, potential theories behind BCG failure, and the scope of novel treatments for this surgical conundrum.

2.
Prev Vet Med ; 226: 106190, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574490

RESUMO

Bovine tuberculosis (bovine TB) is a chronic wasting disease of cattle caused primarily by Mycobacterium bovis. Controlling bovine TB requires highly sensitive, specific, quick, and reliable diagnostic methods. This systematic review and meta-analysis evaluated molecular diagnostic tests for M. bovis detection to inform the selection of the most viable assay. On a per-test basis, loop-mediated isothermal amplification (LAMP) showed the highest overall sensitivity of 99.0% [95% CI: 86.2%-99.9%] and specificity of 99.8% [95% CI: 96.2%-100.00%]. Quantitative real-time polymerase chain reaction (qPCR) outperformed conventional PCR and nested PCR (nPCR) with a diagnostic specificity of 96.6% [95% CI: 88.9%-99.0%], while the diagnostic sensitivity of 70.8% [95% CI: 58.6-80.5%] was comparable to that of nPCR at 71.4% [95% CI: 60.7-80.2%]. Test sensitivity was higher with the input of milk samples (90.9% [95% CI: 56.0%-98.7%]), while specificity improved with tests based on major M. bovis antigens (97.8% [95% CI: 92.3%-99.4%]), the IS6110 insertion sequence (95.4% [95% CI: 87.6%-98.4%]), and the RD4 gene (90.7% [95% CI: 52.2%-98.9%]). The design of the currently available molecular diagnostic assays, while mostly based on nonspecific gene targets, prevents them from being accurate enough to diagnose M. bovis infections in cattle, despite their promise. Future assay development should focus on the RD4 region since it is the only target identified by genome sequence data as being distinctive for detecting M. bovis. The availability of a sufficiently accurate diagnostic test combined with the routine screening of milk samples can decrease the risk of zoonotic transmissions of M. bovis.


Assuntos
Doenças dos Bovinos , Mycobacterium bovis , Tuberculose Bovina , Bovinos , Animais , Mycobacterium bovis/genética , Tuberculose Bovina/diagnóstico , Tuberculose Bovina/microbiologia , Patologia Molecular , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reação em Cadeia da Polimerase em Tempo Real/métodos
3.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612679

RESUMO

Epidemiological surveillance of animal tuberculosis (TB) based on whole genome sequencing (WGS) of Mycobacterium bovis has recently gained track due to its high resolution to identify infection sources, characterize the pathogen population structure, and facilitate contact tracing. However, the workflow from bacterial isolation to sequence data analysis has several technical challenges that may severely impact the power to understand the epidemiological scenario and inform outbreak response. While trying to use archived DNA from cultured samples obtained during routine official surveillance of animal TB in Portugal, we struggled against three major challenges: the low amount of M. bovis DNA obtained from routinely processed animal samples; the lack of purity of M. bovis DNA, i.e., high levels of contamination with DNA from other organisms; and the co-occurrence of more than one M. bovis strain per sample (within-host mixed infection). The loss of isolated genomes generates missed links in transmission chain reconstruction, hampering the biological and epidemiological interpretation of data as a whole. Upon identification of these challenges, we implemented an integrated solution framework based on whole genome amplification and a dedicated computational pipeline to minimize their effects and recover as many genomes as possible. With the approaches described herein, we were able to recover 62 out of 100 samples that would have otherwise been lost. Based on these results, we discuss adjustments that should be made in official and research laboratories to facilitate the sequential implementation of bacteriological culture, PCR, downstream genomics, and computational-based methods. All of this in a time frame supporting data-driven intervention.


Assuntos
Coinfecção , Mycobacterium bovis , Tuberculose , Animais , Mycobacterium bovis/genética , Tuberculose/epidemiologia , Tuberculose/veterinária , DNA , Genômica
4.
J Clin Tuberc Other Mycobact Dis ; 35: 100438, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38623461

RESUMO

Mycobacterium bovis bacille Calmette-Guérin (BCG) is the most effective intravesical immunotherapy for non-muscle invasive bladder cancer (NMIBC), administered after its transurethral resection. Although its instillation is generally well tolerated, BCG-related infectious complications may occur in up to 5% of patients. Clinical manifestations may arise in conjunction with initial BCG instillation or develop months or years after the last BCG instillation. The range of presentations and potential severity pose an imminent challenge for clinicians. We present a case of an isolated subcutaneous chest wall abscess in an immunocompetent 52-year-old patient nearly two years after intravesical BCG instillation for NMIBC, an absolute rarity. As the enlarging chest wall tumor may be misinterpreted as malignancy, its expedient diagnosis and prompt treatment are of critical importance.

5.
Vet J ; : 106111, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38604331

RESUMO

Canine mycobacterial disease was first recognised over 100 years ago but is now an emerging concern. All reported cases of tuberculous disease in dogs have been caused by infection with one of three Mycobacterium tuberculosis-complex (MTBC) organisms (M. tuberculosis, Mycobacterium bovis, and Mycobacterium microti). Molecular PCR and interferon-gamma release assays offer alternative or complementary diagnostic pathways to that of specialist culture, which is limited by availability, sensitivity, and the time it takes to get a result. Optimised triple antimicrobial protocols offer an excellent chance of a successful outcome in dogs where treatment can be considered and is attempted. In this review, the clinical presentation, diagnosis, treatment, and prognosis of canine tuberculosis are discussed.

6.
J Appl Microbiol ; 135(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38520154

RESUMO

AIMS: Our study evaluates the capacity of direct real-time PCR for detecting Mycobacterium tuberculosis complex (MTBC), with a focus on diagnostic performances and the feasibility of implementing this protocol in an eradication campaign. Specifically, we compare the effectiveness of the direct PCR method to various culture systems used by the Italian National Reference Laboratory over the last decade to detect MTBC. METHODS AND RESULTS: Bovine tissue samples were routinely tested and analyzed for bovine tuberculosis (bTB) confirmation using microbiological culture (solid and liquid media), histopathological analysis, and a direct PCR assay targeting IS6110, an insertion sequence specific to the MTBC that is widely used for tuberculosis diagnosis. The direct real-time PCR demonstrated a high concordance (K = 0.871) with microbiological culture, as well as good sensitivity (91.84%) and specificity (95.24%). In contrast, histopathology demonstrated lower concordance (K = 0.746) and performance levels (sensitivity 91.41%, specificity 82.88%). Liquid media promoted faster and more efficient growth of MTBC than solid media. M. bovis and M. caprae had the comparable ability to respond to the direct real-time PCR test and grow on the microbiological medium. CONCLUSIONS: This study confirms that direct real-time PCR can detect MTBC with high diagnostic accuracy within a few days. This study found no significant differences in performance between culture media and direct PCR for M. bovis and M. caprae.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose Bovina , Tuberculose , Animais , Bovinos , Humanos , Mycobacterium tuberculosis/genética , Tuberculose/diagnóstico , Tuberculose/veterinária , Tuberculose/microbiologia , Tuberculose Bovina/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/métodos , Itália , Sensibilidade e Especificidade
7.
Vet Res ; 55(1): 41, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532491

RESUMO

Tuberculosis BCG vaccination induced non-specific protective effects in humans led to postulate the concept of trained immunity (TRAIM) as an innate type of immune mechanism that triggered by a pathogen, protects against others. Killed vaccines have been considered not to be effective. However, field efficacy of a commercial vaccine against paratuberculosis, as well as of a recently developed M. bovis heat-inactivated vaccine (HIMB) prompted to test whether it could also induce TRAIM. To this, we used a sarcoptic mange rabbit model. Twenty-four weaned rabbits were treated orally or subcutaneously with a suspension of either HIMB (107 UFC) or placebo. Eighty-four days later the animals were challenged with approximately 5000 S. scabiei mites on the left hind limb. Skin lesion extension was measured every 2 weeks until 92 days post-infection (dpi). Two animals were killed at 77 dpi because of extensive skin damage. The rest were euthanized and necropsied and the lesion area and the mite burden per squared cm were estimated. Specific humoral immune responses to S. scabiei and to M. bovis were investigated with the corresponding specific ELISA tests. Subcutaneously and orally HIMB vaccinated animals compared with placebo showed reduced lesion scores (up to 74% and 62%, respectively) and mite counts (-170% and 39%, respectively). This, together with a significant positive correlation (r = 0.6276, p = 0.0031) between tuberculosis-specific antibodies and mite count at 92 dpi supported the hypothesis of non-specific effects of killed mycobacterial vaccination. Further research is needed to better understand this mechanism to maximize cross protection.


Assuntos
Mycobacterium bovis , Escabiose , Tuberculose , Humanos , Coelhos , Animais , Escabiose/prevenção & controle , Escabiose/veterinária , Tuberculose/veterinária , Ensaio de Imunoadsorção Enzimática/veterinária , Imunidade Humoral , Vacinas de Produtos Inativados , Vacina BCG
8.
One Health ; 18: 100702, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38487729

RESUMO

This study investigated the presence of Mycobacterium bovis (M. bovis) DNA in archived human sputum samples previously collected from residents who reside adjacent to the M. bovis-endemic Hluhluwe-iMfolozi wildlife park, South Africa (SA). Sixty-eight sputum samples were GeneXpert MTB/RIF Ultra-positive for M. tuberculosis complex (MTBC) DNA but culture negative for M. tuberculosis. Amplification and Sanger sequencing of hsp65 and rpoB genes from DNA extracted from stored heat-inactivated sputum samples confirmed the presence of detectable amounts of MTBC from 20 out of the 68 sputum samples. Region of difference PCR, spoligotyping and gyrB long-read amplicon deep sequencing identified M. bovis (n = 10) and M. tuberculosis (n = 7). Notably, M. bovis spoligotypes SB0130 and SB1474 were identified in 4 samples, with SB0130 previously identified in local cattle and wildlife and SB1474 exclusively in African buffaloes in the adjacent park. M. bovis DNA in sputum, from people living near the park, underscores zoonotic transmission potential in SA. Identification of spoligotypes specifically associated with wildlife only and spoligotypes found in livestock as well as wildlife, highlights the complexity of TB epidemiology at wildlife-livestock-human interfaces. These findings support the need for integrated surveillance and control strategies to curb potential spillover and for the consideration of human M. bovis infection in SA patients with positive Ultra results.

9.
Tuberculosis (Edinb) ; 147: 102493, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38547568

RESUMO

Tuberculosis, caused by Mycobacterium tuberculosis, remains one of the deadliest infections in humans. Because Mycobacterium bovis Bacillus Calmette-Guérin (BCG) share genetic similarities with Mycobacterium tuberculosis, it is often used as a model to elucidate the molecular mechanisms of more severe tuberculosis infection. Caveolin-1 has been implied in many physiological processes and diseases, but it's role in mycobacterial infections has barely been studied. We isolated macrophages from Wildtype or Caveolin-1 deficient mice and analyzed hallmarks of infection, such as internalization, induction of autophagy and apoptosis. For in vivo assays we intravenously injected mice with BCG and investigated tissues for bacterial load with colony-forming unit assays, bioactive lipids with mass spectrometry and changes of protein expressions by Western blotting. Our results revealed that Caveolin-1 was important for early killing of BCG infection in vivo and in vitro, controlled acid sphingomyelinase (Asm)-dependent ceramide formation, apoptosis and inflammatory cytokines upon infection with BCG. In accordance, Caveolin-1 deficient mice and macrophages showed higher bacterial burdens in the livers. The findings indicate that Caveolin-1 plays a role in infection of mice and murine macrophages with BCG, by controlling cellular apoptosis and inflammatory host response. These clues might be useful in the fight against tuberculosis.

10.
Molecules ; 29(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542933

RESUMO

The efficacy of 23 bacterial isolates obtained from surface-sterilized stems and leaves of three medicinal plants (Aloe barbadensis Miller, Artemisia afra, and Moringa oleifera) was investigated in an endeavour to prevent the growth of Mycobacterium bovis using the cross-streak method. Endophytes were isolated by incubating sterile plant materials on nutrient agar at 30 °C for 5 days. Two isolates showing activity were subsequently utilized to produce the extracts. Whole-genome sequencing (WGC) was used to identify the isolates. Secondary metabolites produced after 7 days of growth in nutrient broth were harvested through extraction with ethyl acetate. The extracts were chemically profiled using gas chromatography-high resolution time-of-flight mass spectrometry (GC-HRTOF-MS). NCBI BLAST search results revealed that the isolated endophytes belonged to the Pseudomonas and Enterobacter genera, based on WGC. Two endophytes, Aloe I4 and Aloe I3-I5 from Aloe barbadensis, exhibited potency based on the cross-streak method. The metabolite profiling of the selected endophytes identified 34 metabolites from Aloe I4, including ergotamine, octadecane, L-proline and 143 other metabolites including quinoline and valeramide, which inhibit microbial quorum sensing. These findings suggest that bacterial endophytes from medicinal plants, particularly Aloe barbadensis, hold promise as sources of antimycobacterial agents for human health applications.


Assuntos
Aloe , Plantas Medicinais , Humanos , Aloe/química , Endófitos , África do Sul , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Extratos Vegetais/farmacologia
11.
Front Vet Sci ; 11: 1333975, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440384

RESUMO

Background: Deer tuberculosis is a chronic zoonotic infectious disease, despite the existence of socio-economic and zoonotic risk factors, but at present, there has been no systematic review of deer tuberculosis prevalence in mainland China. The aim of this meta-analysis was to estimate the overall prevalence of deer TB in mainland China and to assess possible associations between potential risk factors and the prevalence of deer tuberculosis. Methodology: This study was searched in six databases in Chinese and English, respectively (1981 to December 2023). Four authors independently reviewed the titles and abstracts of all retrieved articles to establish the inclusion exclusion criteria. Using the meta-analysis package estimated the combined effects. Cochran's Q-statistic was used to analyze heterogeneity. Funnel plots (symmetry) and used the Egger's test identifying publication bias. Trim-and-fill analysis methods were used for validation and sensitivity analysis. we also performed subgroup and meta-regression analyses. Results: In this study, we obtained 4,400 studies, 20 cross-sectional studies were screened and conducted a systematic review and meta-analysis. Results show: The overall prevalence of tuberculosis in deer in mainland China was 16.1% (95% confidence interval (CI):10.5 24.6; (Deer tuberculosis infected 5,367 out of 22,215 deer in mainland China) 5,367/22215; 1981 to 2023). The prevalence in Central China was the highest 17.5% (95% CI:14.0-21.9; 63/362), and among provinces, the prevalence in Heilongjiang was the highest at 26.5% (95% CI:13.2-53.0; 1557/4291). Elaphurus davidianus was the most commonly infected species, with a prevalence of 35.3% (95% CI:18.5-67.2; 6/17). We also assessed the association between geographic risk factors and the incidence of deer tuberculosis. Conclusion: Deer tuberculosis is still present in some areas of China. Assessing the association between risk factors and the prevalence of deer tuberculosis showed that reasonable and scientific-based breeding methods, a suitable breeding environment, and rapid and accurate detection methods could effectively reduce the prevalence of deer tuberculosis. In addition, in the management and operation of the breeding base, improving the scientific feed nutrition standards and establishing comprehensive standards for disease prevention, immunization, quarantine, treatment, and disinfection according to the breeding varieties and scale, are suggested as ways to reduce the prevalence of deer tuberculosis.

12.
J Infect Dis ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456644

RESUMO

Epidemiologic research on zoonotic tuberculosis historically used Mycobacterium bovis as a surrogate measure, however, increased reports of human tuberculosis caused by other animal-associated Mycobacterium tuberculosis complex members like Mycobacterium orygis necessitates their inclusion. We performed a retrospective cohort study including persons infected with any animal-lineage M. tuberculosis complex species in Alberta, Canada, from January 1995 to July 2021, identifying 42 patients (20 M. bovis, 21 M. orygis, one M. caprae). Demographic, epidemiologic and clinical characteristics were compared against persons with culture-confirmed M. tuberculosis infection. The proportion of culture-positive infections caused by M. orygis increased continuously from 2016-2020. Significantly more females at a higher median age were impacted by M. orygis, with all patients originating from South Asia. M. bovis caused significantly more extra-pulmonary disease, and disproportionately impacted young females, particularly those pregnant or post-partum. All infections were acquired abroad. These findings can aid in developing targeted public health interventions.

13.
Microorganisms ; 12(2)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38399810

RESUMO

Bovine tuberculosis and paratuberculosis are endemic in many areas worldwide. This work aims to study cytokines production and gene expression profiles of bovine macrophages infected with Mycobacterium bovis and Mycobacterium paratuberculosis subsp. avium (MAP) strains to identify potential diagnostic biomarkers. Bovine bone marrow stem cells were differentiated into macrophages and subsequently infected in vitro with different spoligotypes of M. bovis and MAP field strains (as single infections and coinfections), using different multiplicity of infection. Supernatant and cell pellets were collected 24 h, 48 h, and one week post-infection. Preliminarily, gene expression on cell pellets of IL-1ß, IL-2, INFγ, IL-6, IL-10, IL-12, and TNFα was assessed by qRT-PCR one week p.i. Subsequently, IL-1ß and IL-6 were measured by ELISA and qRT-PCR to investigated their production retrospectively 24 h and 48 h p.i. A variability in macrophages response related to the concentration of mycobacteria, the coinfection with MAP, and M. bovis spoligotypes was identified. An early and constant IL-6 increase was observed in the M. bovis infection. A lower increase in IL-1ß was also detected at the highest concentration of the two M. bovis spoligotypes one week post-infection. IL-6 and IL-1 ß production was reduced and differently expressed in the MAP infection. IL-6 appeared to be the earliest cytokines produced by bovine macrophages infected with M. bovis.

14.
Vet J ; 304: 106089, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412886

RESUMO

Cases of canine tuberculosis, a zoonotic infection of significant public health significance, are typically only sporadically reported in the literature. For this observational study, case details were collated both retrospectively and prospectively for dogs infected with Mycobacterium tuberculosis-complex (MTBC) organisms. A total of 18 previously unreported cases as well as 565 historically reported confirmed cases were reviewed. A variety of diagnostic techniques were used to make a confirmed diagnosis of tuberculosis (culture, interferon-gamma release assay [IGRA], and PCR). The reference standard for diagnosis is culture; however, this was negative or not attempted in some dogs. Where fully speciated, all cases were caused by infection with one of three MTBC organisms: M. tuberculosis, Mycobacterium bovis, or Mycobacterium microti. This study includes the first documented canine infections with M. microti in the UK. All cases were assigned to one of four clinical groups based on the presenting signs: 44.1% were primarily pulmonary, 14.5% were primarily abdominal, and the remainder were disseminated or miscellaneous. The development of adjunctive tests remains necessary to support early treatment decisions pending reporting of culture for MTBC organisms, which can take weeks to months. Definitive treatment, where attempted, was successful in most cases. Of the 13 dogs treated by the authors with triple combination antimicrobial therapy, a good clinical outcome was seen in 12 (92%) of them.


Assuntos
Doenças do Cão , Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose , Animais , Cães , Estudos Retrospectivos , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico , Tuberculose/veterinária , Zoonoses , Doenças do Cão/diagnóstico , Doenças do Cão/tratamento farmacológico , Doenças do Cão/microbiologia , Estudos Observacionais como Assunto , Estudos Observacionais Veterinários como Assunto
15.
Front Microbiol ; 15: 1349163, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419629

RESUMO

Animal tuberculosis, caused by Mycobacterium bovis, presents a significant threat to both livestock industries and public health. Mycobacterium bovis tests rely on detecting antigen specific immune responses, which can be influenced by exposure to non-tuberculous mycobacteria, test technique, and duration and severity of infection. Despite advancements in direct M. bovis detection, mycobacterial culture remains the primary diagnostic standard. Recent efforts have explored culture-independent PCR-based methods for identifying mycobacterial DNA in respiratory samples. This study aimed to detect M. bovis in nasal swabs from goats (Capra hircus) cohabiting with M. bovis-infected cattle in KwaZulu-Natal, South Africa. Nasal swabs were collected from 137 communal goats exposed to M. bovis-positive cattle and 20 goats from a commercial dairy herd without M. bovis history. Swabs were divided into three aliquots for analysis. The first underwent GeneXpert® MTB/RIF Ultra assay (Ultra) screening. DNA from the second underwent mycobacterial genus-specific PCR and Sanger sequencing, while the third underwent mycobacterial culture followed by PCR and sequencing. Deep sequencing identified M. bovis DNA in selected Ultra-positive swabs, confirmed by region-of-difference (RD) PCR. Despite no other evidence of M. bovis infection, viable M. bovis was cultured from three communal goat swabs, confirmed by PCR and sequencing. Deep sequencing of DNA directly from swabs identified M. bovis in the same culture-positive swabs and eight additional communal goats. No M. bovis was found in commercial dairy goats, but various NTM species were detected. This highlights the risk of M. bovis exposure or infection in goats sharing pastures with infected cattle. Rapid Ultra screening shows promise for selecting goats for further M. bovis testing. These techniques may enhance M. bovis detection in paucibacillary samples and serve as valuable research tools.

16.
Vet Microbiol ; 291: 110007, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38335676

RESUMO

Mycobacterium bovis is an etiological agent of bovine tuberculosis (bTB) that also infects other mammals, including humans. The lack of an effective vaccine for the control of bTB highlights the need for developing new vaccines. In this study, we developed and evaluated an M. bovis strain deleted in the virulence genes phoP, esxA and esxB as a vaccine candidate against bTB in BALBc mice. The evaluated strains were the new live vaccine and BCG, alone or in combination with ncH65vD. The immunogen ncH65vD is a fusion protein H65, encapsulated together with vitamin D3, within the oily body of a nanocapsule composed of an antigen-loading polymeric shell. All vaccines conferred protection against the M. bovis challenge. However, no significant differences were detected among the vaccinated groups regarding bacterial loads in lungs and spleen. Mice vaccinated with the mutant strain plus ncH65vD showed negative Ziehl Neelsen staining of mycobacteria in their lungs, which suggests better control of bacteria replication according to this protection parameter. Consistently, this vaccination scheme showed the highest proportion of CD4 + T cells expressing the protection markers PD-1 and CXCR3 among the vaccinated groups. Correlation studies showed that PD-1 and CXCR3 expression levels in lung-resident CD4 T cells negatively correlated with the number of colony forming units of M. bovis in the lungs of mice. Therefore, the results suggest a link between the presence of PD-1 + and CXCR3 + cells at the site of the immune response against mycobacteria and the level of mycobacterial loads.


Assuntos
Doenças dos Bovinos , Mycobacterium bovis , Mycobacterium tuberculosis , Doenças dos Roedores , Vacinas contra a Tuberculose , Tuberculose Bovina , Humanos , Bovinos , Animais , Camundongos , Tuberculose Bovina/prevenção & controle , Vacina BCG , Receptor de Morte Celular Programada 1 , Vacinação/veterinária , Mamíferos
17.
Prev Vet Med ; 225: 106146, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368697

RESUMO

The epidemiological system for Mycobacterium bovis in France involves cattle and, in some areas, wildlife species (mainly badgers and wild boar). This multi-host aspect complicates the control and eradication prospects for bovine tuberculosis in endemic areas, despite the surveillance and control measures implemented for decades in this officially tuberculosis-free European country. To improve control measures, and to manage spillback transmission from badgers to cattle, it is necessary to clarify the transmission mechanisms of M. bovis in these epidemiological systems. We modelled a badger population from a southwestern endemic area by a Dirichlet tessellation based on a sett census conducted by local hunters and trappers between 2013 and 2015. We then used a logistic regression model to test the association between the infection status of setts and computed variables depicting three types of transmission (intraspecific, interspecific and landscape-associated). The apparent prevalence of infected setts was of 40.5%. Two variables were significantly associated with the probability for a sett to be infected: the proportion of neighbouring setts that were infected (OR: 3.19 [2.04-5.17]95%) and the presence of nearby pastures belonging to an infected farm (OR: 2.33 [1.13-4.89]95%]. While badger culling measures have been implemented according to the national TB control plan in the study area since 2012 (in the vicinity of infected farms and their pastures), our results clearly highlight the need to reinforce measures aimed at reducing both intraspecific and interspecific infection pressure. For this purpose, the promising prospect of badger vaccination could be considered, along with biosecurity measures.


Assuntos
Doenças dos Bovinos , Mustelidae , Mycobacterium bovis , Tuberculose Bovina , Tuberculose , Bovinos , Animais , Mustelidae/microbiologia , Tuberculose Bovina/microbiologia , Tuberculose/epidemiologia , Tuberculose/veterinária , Animais Selvagens
18.
Clin Infect Dis ; 78(3): 637-645, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38207126

RESUMO

BACKGROUND: A unique enzootic focus of Mycobacterium bovis in free-ranging deer was identified in northern lower Michigan in 1994, with subsequent evidence of transmission to local cattle herds. Between 2002 and 2017, 3 Michigan deer hunters with M. bovis disease were previously reported. We present 4 additional human cases linked to the zoonotic focus in deer, utilizing genomic epidemiology to confirm close molecular associations among human, deer and cattle M. bovis isolates. METHODS: Identification of human tuberculosis (TB) cases with cultures of M. bovis was provided from the Michigan Department of Health and Human Services (MDHHS) tuberculosis database. Clinical review and interviews focused on risk factors for contact with wildlife and cattle. Whole genome sequences of human isolates were compared with a veterinary library of M. bovis strains to identify those linked to the enzootic focus. RESULTS: Three confirmed and 1 probable human case with M. bovis disease were identified between 2019 and 2022, including cutaneous disease, 2 severe pulmonary disease cases, and human-to-human transmission. The 3 human isolates had 0-3 single-nucleotide polymorphisms (SNPs) with M. bovis strains circulating in wild deer and domestic cattle in Michigan. CONCLUSIONS: Spillover of enzootic M. bovis from deer to humans and cattle continues to occur in Michigan. Future studies should examine the routes of transmission and degree of risk to humans through expanded epidemiological surveys. A One Health approach linking human, veterinary and environmental health should address screening for TB infection, public education, and mitigation of transmission.


Assuntos
Cervos , Mycobacterium bovis , Tuberculose , Animais , Humanos , Bovinos , Mycobacterium bovis/genética , Michigan/epidemiologia , Cervos/microbiologia , Tuberculose/epidemiologia , Tuberculose/veterinária , Tuberculose/prevenção & controle , Animais Selvagens
19.
Microbiol Spectr ; 12(2): e0228923, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38230932

RESUMO

We analyzed the pan-genome and gene content modulation of the most diverse genome data set of the Mycobacterium tuberculosis complex (MTBC) gathered to date. The closed pan-genome of the MTBC was characterized by reduced accessory and strain-specific genomes, compatible with its clonal nature. However, significantly fewer gene families were shared between MTBC genomes as their phylogenetic distance increased. This effect was only observed in inter-species comparisons, not within-species, which suggests that species-specific ecological characteristics are associated with changes in gene content. Gene loss, resulting from genomic deletions and pseudogenization, was found to drive the variation in gene content. This gene erosion differed among MTBC species and lineages, even within M. tuberculosis, where L2 showed more gene loss than L4. We also show that phylogenetic proximity is not always a good proxy for gene content relatedness in the MTBC, as the gene repertoire of Mycobacterium africanum L6 deviated from its expected phylogenetic niche conservatism. Gene disruptions of virulence factors, represented by pseudogene annotations, are mostly not conserved, being poor predictors of MTBC ecotypes. Each MTBC ecotype carries its own accessory genome, likely influenced by distinct selective pressures such as host and geography. It is important to investigate how gene loss confer new adaptive traits to MTBC strains; the detected heterogeneous gene loss poses a significant challenge in elucidating genetic factors responsible for the diverse phenotypes observed in the MTBC. By detailing specific gene losses, our study serves as a resource for researchers studying the MTBC phenotypes and their immune evasion strategies.IMPORTANCEIn this study, we analyzed the gene content of different ecotypes of the Mycobacterium tuberculosis complex (MTBC), the pathogens of tuberculosis. We found that changes in their gene content are associated with their ecological features, such as host preference. Gene loss was identified as the primary driver of these changes, which can vary even among different strains of the same ecotype. Our study also revealed that the gene content relatedness of these bacteria does not always mirror their evolutionary relationships. In addition, some genes of virulence can be variably lost among strains of the same MTBC ecotype, likely helping them to evade the immune system. Overall, our study highlights the importance of understanding how gene loss can lead to new adaptations in these bacteria and how different selective pressures may influence their genetic makeup.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Filogenia , Tuberculose/microbiologia , Genômica , Fatores de Virulência/genética
20.
Vaccine ; 42(3): 403-409, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38184390

RESUMO

Based on previous evidence demonstrating the efficacy of inactivated mycobacteria for the control of fish mycobacteriosis, we explored the protective efficacy of two inactivated Mycobacterium bovis administered via parenteral and mucosal routes against Mycobacterium marinum infection mimicking natural conditions in the zebrafish model of tuberculosis. Although we did not observe a clear effect of any of the immunostimulants on mycobacterial burden, the results showed a significant increase in TLR2 and TLR4 gene expression levels in fishes parenterally immunized with inactivated Bacillus Calmette-Guérin (BCG). Our findings demonstrated that the TLR2 and the TLR4 signaling pathways are involved in the immune response elicited by inactivated mycobacteria in the zebrafish model of tuberculosis and support the use of inactivated mycobacteria in vaccine formulations for the control of mycobacteriosis.


Assuntos
Mycobacterium bovis , Tuberculose , Animais , Receptor 2 Toll-Like , Peixe-Zebra , Receptor 4 Toll-Like , Temperatura Alta , Vacina BCG
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...